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Abstract

The dependence of the natural frequencies and modes of the oscillations of distributed elastic system with characteristics of the
stiffness and density that are variable along a coordinate of the cross section for arbitrary boundary conditions is investigated. It
is proved that the presence of an external elastic medium, described by the Winkler model, may lead to an increase in the natural
frequencies of the lower oscillation modes when the length of a one-dimensional elastic system is increased. The fine properties
of the change in the natural frequencies as a function of the length of the system and the number of the oscillation mode are also
established. A numerical-analytical investigation of examples which illustrate the characteristic anomalous behaviour of the lowest
natural frequencies is presented.
© 2006 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

We will consider the problem of determining the natural frequencies � and modes u(x) of the oscillations of a
distributed elastic system, described by a boundary-value problem for a differential equation of the form1–6

(1.1)

for standard sign-definite and smoothness conditions of the functions p, r and q.2–4 These have a definite physical
meaning for distributed elastic systems, namely, p is the stiffness, r is the density per unit length and q is the coefficient
of elasticity of the external medium (the Winkler model). At the left end x = 0 and right end x = 1 of the interval the
following boundary conditions of elastic fixing of the system are specified

(1.2)

The coefficients �0, l and �0, l represent the relative effect of the distributed and concentrated elasticity. In particular,
when �0 = �l = 0 we have the boundary conditions of rigid fixing: u(0) = u(l) = 0; when �0 = �l = 0 the ends of the system
are free: u′(0) = u′(l) = 0. Conditions of these forms may be satisfied at one or both ends of the interval; the length of
the interval is assumed to be limited: l < ∞.
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The problem of determining and analysing the natural frequencies and forms (1.1) and (1.2), i.e. the Sturm-Liouville
problem of the natural values and functions and its generalizations has been comprehensively investigated in connection
with applications to the theory of elasticity, hydrodynamics and acoustics. A number of analytical and numerical
methods of estimation and approximate solution of the problem have been developed. The fundamental properties of
the problem have been established: the existence of a denumerable discrete set of natural frequencies ωn = √

λn and
forms un(x) = u(x, �n) (n = 0, 1, 2, . . .), the oscillation properties, the asymptotic behaviour as n → ∞, etc.

However, the effect of the length of the interval in which a change in the argument x occurs, i.e. the values of the
parameter l > 0 has not been investigated in known publications. In theoretical and applied formulations of the problems
it is usually assumed that l = l0 = const and, by means of normalization, the length is reduced to the value l0 = 1. An
analysis of the solution based on Sturm’s comparison theorems2–4 and using an accelerated convergence numerical-
analytical method1,5 indicates a significant influence of the parameter l on the natural frequencies of the system.
It is convenient to use this fundamental property in approximate procedures for calculating the natural frequencies
�n(l) and the natural forms u∗

n(x, l) = un||un||−1
r , orthonormalized with weight r(x), where the square of the norm

||un||2r = (un, un)r is the weighted scalar product.
In the first place, a local investigation of the relation �n(l) in the neighbourhood of the fixed value l = l0, i.e. for

l = l0 + �l, where the variation of the length |�l| � l0, is of theoretical and applied interest. After normalizing the
argument x by l0 we can consider the interval 0 ≤ x ≤ 1 + a, where a = �l/l0, |a| � 1, see Sections 3 and 4. Then, using
a numerical-analytical procedure of continuation with respect to the parameter a and the accelerated convergence
method, we can investigate the relation �n(l) for variations �l ∼ l0, i.e. a ∼ 1. To fix our ideas, the quantity l0 will be
chosen as the minimum value of l and the investigation will be carried out for a > 0. In general, this assumption is
unnecessary.

We will obtain expressions for the “sensitivity coefficients”, which are defined by the first and second derivatives
λ′
n(l0), λ′′

n(l0) with respect to l for l = l0. They represent the local relation �n(l) in the neighbourhood of the value
l = l0. This corresponds, in the normalized version, to the expressions λ′

n(1) = λ′
n, λ′′

n(1) = λ′′
n, i.e. the derivatives with

respect to the parameter a for a = 0. The expressions for subsequent coefficients, defined by higher-order derivatives,
are determined similarly.

2. Determination of the local dependence of the natural oscillation frequencies on the length parameter of
the system

The required local characteristics of the natural oscillation frequencies are constructed using the well-known solution
of the self-adjoint boundary-value problem for natural frequencies and the functions (1.1) and (1.2) for l = l0 (l = 1, i.e.
a = 0, when the argument x is normalized by l0). It is natural to determine the approximate natural frequencies �n and
eigenvalues �n in the form

(2.1)

when |�l| is fairly small. Representations similar to (2.1) can be written for the natural forms of oscillations un

(2.2)

Thus, we assume that the solution �n, un(x, l) of problem (1.1), (1.2) is known for the particular value l = l0. The
derivatives λ′

n, λ
′′
n and the sensitivity functions vn and wn are found by differentiating with respect to l. In particular,
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to find λ′
n(l0) and vn(x) we use the relations

(2.3)

For brevity we have not written the arguments and subscripts in relations (2.3).
We multiply the equations for u (1.1) by v and the equation for v (2.3) by u and subtract the second result from the

first. Integrating the difference with respect to x in the section 0 ≤ x ≤ l0, taking boundary conditions (1.2) and (2.3)
into account, we obtain the required expression for �′

n

(2.4)

These representations are independent of the form of the functions vn(x). From expressions (2.4) we can determine
particular expressions in the case of boundary conditions corresponding to rigid fixing (�l = 0) and a free (�l = 0) right
end x = l0; by conditions (1.2) we obtain, respectively,

(2.5)

(2.6)

The quantities �′
n(l0) are calculated from formulae (2.1).

For the boundary condition of rigid fixing, according to relations (2.5) the quantities �′
n are negative for all n = 1, 2,

. . ., i.e. all the eigenvalues �n and the natural frequencies �n decrease as the interval is extended by moving the right
end rightwards. This property corresponds to physical considerations and is known in the literature.1–4 When q(l0) = 0
or for sufficiently small q > 0, the values of ω′

n, λ
′
n become negative for general conditions of elastic fixing (2.4) and for

a free right end (2.6) of the system, which also corresponds to the effect of decreasing all the quantities �n, �n(n = 0,
1, . . .) for sufficiently small |�l| > 0.

If the action of the external elastic medium, characterized by the coefficient q(x), is “fairly large” locally in the
neighbourhood of the point x = l0, and is “relatively small” integrally in the section 0 ≤ x ≤ l0, the nature of the sign-
definiteness of the quantities ω′

n(l0), λ′
n(l0) (2.6) becomes more complicated. The following assertion regarding the

local behaviour of the eigenvalues �n(l) in the neighbourhood of l = l0 holds.

Theorem. The following inequalities hold for the oscillation frequencies when l = l0

(2.7)

This corresponds to a local increase in the natural frequencies and the forms of the lower modes n = 0, 1, . . ., k − 1
and a non-decreasing k-th mode (in the linear approximation) as l ≤ l0 increases; the subsequent natural frequencies
and eigenvalues decrease as l increases.

The sufficient constructive conditions can be established using Rayleigh’s principle and the Rayleigh-Ritz method,1–3

which enable one to obtain effective upper estimatesω∗
n(l0) andλ∗

n(l0) of the required frequencies �n(l0) and eigenvalues
�n(l0). In particular, for case (2.6) when n = 0 we have

(2.8)

where �0(x) is the test function and ψ′
0(l0) = 0. To calculate the next λ∗

n it is necessary to construct a system of test
functions {�n(x)}. Hence, if inequalities (2.7) occur when the values of λ∗

n are substituted into expressions (2.6), they
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necessarily hold for the exact quantities λn ≤ λ∗
n, n ≤ k. The set of functions p(x), r(x) and q(x), which satisfy conditions

(2.7), is non-empty (see Sections 3 and 4).
The more detailed property of the natural frequencies �n(l) and eigenvalues �n(l) established in the theorem has

not previously been pointed out. Moreover, there are doubtful assertions (see Ref. 4, p. 512), which contradict the
assertions of the theorem and the calculations of specific examples (see below in Sections 3 and 4): thus, it is stated
that extension of the interval implies a reduction in all the eigenvalues for the Sturm-Liouville problem with boundary
conditions of the second kind.

Note that the rough property (ignoring the function q(x)) of the natural frequencies ωn(l) ∼ l−1
n and the values

λn(l) ∼ l−2, that they decrease with l when n 	 1, obviously follows from the asymptotic estimates and has been
investigated in detail in the classical books2,3 and subsequent publications.1,6

In the critical case λ′
n(l0) ≈ 0 the effect of an increase or decrease in the values of �n(l) in the neighbourhood of

l = l0 is determined by the value and sign of the second derivative λ′′
n(l0) according to formula (2.1). Expressions for

λ′′
n can be obtained using relations (2.3) and similarly for the unknown w

(2.9)

(the arguments and subscripts are omitted here for brevity). In exactly the same way as when calculating �n (see
above), the procedure of multiplying Eq. (2.9) for un by wm and Eq. (2.9) for wn by un, subtracting and integrating the
difference, leads to extremely cumbersome formulae

(2.10)

The right-hand side of Eq. (2.10) is independent of wn. In formulae (2.10) it is assumed that the functions p, r and
q are differentiable at the point x = l0. When λ′

n = 0 the corresponding expression for λ′′
n is simplified considerably.

The required quantities �n, λ′
n, λ

′′
n can be calculated in practice by numerical-analytical methods. According to Eq.

(2.10) it is required to determine the functions vn(x), v′n(x) for all 0 ≤ x ≤ l0 by solving inhomogeneous boundary-value
problems (2.3). By virtue of the homogeneity of expressions (1.1), (1.2), (2.3) and (2.9) with respect to u and v we can
confine ourselves to finding vn and v′n by solving the Cauchy problem with the conditions

In practical calculations it is preferable to use the procedure of continuation with respect to the parameter l based on
the accelerated convergence method.1,5 The results discussed indicate the presence of previously unknown qualitative
features of the behaviour of the natural frequencies of oscillations of distributed elastic systems.

3. Test examples

We will calculate some model examples which illustrate the effect of the increase in the lowest eigenvalues and
natural frequencies as the length of the system l increases. For convenience we will assume l = 1 + a, � = �(a) and
u = u(x, a); the coefficients of Eq. (1.1) and the boundary conditions (1.2) are taken in the form

(3.1)

The minimum (zero) eigenvalue �0(0) for a = 0, i.e. when l = l0 = 1, is equal to �0(0) = 0.796; the next eigenvalue
�1(0) = 25.505. They are found by using the accelerated convergence method.1,5 We will calculate the coefficient in
the square brackets for �0 from relation (2.6); it is equal to �0r(1) − q(1) = −0.73474 < 0. The fact that it is negative
indicates the increase (or decrease) in the value of �0(a), i.e. �0(a)≷�0(0), when the parameter a≷ 0 increases (or
decreases), see Fig. 1. The eigenvalues �n, n ≥ 1 decrease as the value of a increases and increase when the value of
a decreases. In particular, for �1 we have �1r(1) − q(1) = 7.501 > 0, see Fig. 1. When q = 9x2 we have �0(0) = 5.625;
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Fig. 1.

the corresponding curve of �0(a) is similar to the curve of �0(a) in Fig. 1, but now λ′′
0(1) < 0, i.e. the curve is convex

upwards, rather than downwards, as in Fig. 1.
We will consider another example which enables us to establish the property, indicated in the theorem, that the

subsequent lower eigenvalues �n, n ≥ 1 increase. We will take the class of functions q(x), which define the coefficient
of elasticity of the external elastic medium, which increase more sharply than in (3.1) when x ≈ 1. Suppose the
coefficients p, r and q of Eq. (1.1) have the form

(3.2)

By choosing the parameters q0 and m we can obtain a sharp increase in the coefficient of elasticity q(x) near the right
end x = 1 for a moderate increase in �n(a). When q0 = 0.4 and m = 8 we obtain �0(a) = 2.4346 and �1(0) = 16.897; the
values of the coefficient in the square brackets of (2.6) are negative, since q(1) = 25.6 > �0,1(0). The corresponding
curves of �0(a) and �1(a) for −0.3 ≤ a ≤ 0.3 are shown in Fig. 2. Like the curve of �0(a) in Fig. 1, they illustrate the
property that the natural frequencies �0,1(a) and eigenvalues �0,1(l) for the lower modes n = 0,1 increase when the
parameter a increases in the neighbourhood of a = 0, as established in the theorem.

It is interesting to note, however, that the function �1(a) is non-monotonic as a decreases (a < 0). In the neighbourhood
of the value l ≈ 0.9 (a ≈ −0.1) a pronounced minimum is observed.

When a → −1, which implies l → 0, we have the asymptotic form �1 ∼ (�/l)2 → ∞, which corresponds to phys-
ical considerations. The eigenvalue �0(a) decreases monotonically as a → −1, i.e. l → 0, and approaches the values
λ0(−1) = qm0 = 1/256.

Using this approach one can investigate the case of other values of the parameters q0 and m, and also more complex
expressions for the coefficients p, r and q. The nature of the effect can be illustrated most convincingly using examples
of systems with piecewise-constant characteristics. They allow of complete integration and can be reduced to finite
transcendental equations for determining and analysing the natural frequencies. Such systems are of certain interest
when solving and analysing applied problems.

Fig. 2.
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4. Systems with piecewise-constant characteristics

Problem (1.1), (1.2) for an elastic system with piecewise-continuous coefficients p(x), r(x) and q(x) requires the
development of special calculation algorithms. It can be investigated using a variational approach and the Rayleigh-Ritz
method. In practice elastic systems can often be described by an equation of the form (1.1) with piecewise-constant
characteristics. This enables one to integrate the equations on intervals where the coefficients are constant and reduce the
solution of the problem to an algebraic transcendental equation containing power-law, trigonometric and exponential
functions for determining the eigenvalues and natural frequencies of the system. Instead of a discontinuous function
u′ it is more convenient to use the continuous physical variable � = pu′, where the coefficient p has a kink at the points
of discontinuity. The variable u has a kink at the points of discontinuity of the stiffness coefficient p.

1◦. We will consider the relatively simple situation when the elastic system (a string, an elastic shaft or a beam) has
constant characteristics p, r = const > 0, while the external elastic medium contains two parts where the stiffness
coefficient q(x) is constant. As a result of normalization we obtain a problem of the form

(4.1)

The general solution of Eq. (4.1) when � ≥ q0 can be represented in the form (a1,2, b1,2 = const)

(4.2)

(4.3)

The values of u(x) and u′(x) must be identical when x = 1 ± 0.
When q0 ≥ � for 0 ≤ x ≤ 1 expression (4.2) remains true. For 1 < x ≤ l the trigonometric functions in (4.3) must be

replaced by hyperbolic functions, which is equivalent to the replacements � → i�, ia2 → a2.
The characteristic equation for determining the eigenvalues � is obtained from the condition for the fourth-order

determinant to be equal to zero.
When � ≥ q0 we have

(4.4)

(�(�) is an odd function of the variables 	 and �). When q0 ≥ � we have a representation of the form (4.4) in which
we must make the substitutions

with the corresponding expression for ω(ω = √
q0 − λ). When a = 0 Eq. (4.4) has a standard trigonometric form (after

contraction at � = 0)

(4.5)

The roots 	n(0) of Eq. (4.5) can be found numerically for all n = 0, 1, 2, . . . and specified �0, l, �0, l. The corresponding
values of 	n(a) when a = 0 are calculated using an extremely lengthy procedure of continuation with respect to the
parameter. Hence, it is of interest at the initial stage to investigate the limiting situations when there are boundary
conditions corresponding to fixed or free ends.

2◦. Suppose both ends are free, i.e. we have �0, l = 0, �0, l = 1 in problem (4.1). From relations (4.2) and (4.3) we obtain
the following representations for the eigenfunctions and characteristic equations for q0 ≷� respectively
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(4.6)

It follows from relations (4.6) that the lower natural frequencies ωn(a) = √
λn(a), such that �n(0) < q0, increase as

a → ∞ and approach the roots of the corresponding equation 	 sin 	 = � cos 	. By a standard method of analysis
we can similarly establish that the higher natural frequencies ωn(a) = √

λn(a), such that �n(0) > q0, decrease. In the
limiting case, if, for certain n = n*, the quantity λn∗ (1) = q0 = (n∗π)2, then λn∗ (l) ≡ (n∗π)2 irrespective of the value
of a ≥ 0, i.e. ωn∗ (a) ≡ n∗π. When n < n* the values of �n(a) increase as the length parameter a increases and when
n > n* the values of �n(a) decrease; the behaviour of the natural frequencies �n(a) is similar.

We will briefly consider the case when the left end (x = 0) is fixed – u(0) = 0, while the right end (x = l) is free –
u′(l) = 0. Relations of the type (4.6) become

(4.7)

As above, the lower eigenvalues �n(a) such that �n(0) < q0, increase, while the higher eigenvalues �n(0) > q0, increase;
when q0 = (n* − 1/2�)2 we have λn∗ (a) ≡ (n∗ − 1/2π)2, i.e. ωn∗ (a) ≡ (n∗ − 1/2)π.

3◦. We will investigate the case of a fixed right end: u(l) = 0. Suppose the left end is also fixed – u(0) = 0; then,
like relations (4.6) and (4.7), we will have the following representations for the eigenfunctions and characteristic
equations

(4.8)

According to the representations (4.8), all eigenvalues �n(a) decrease as the parameter a increases independently of
the quantities �n(0)≷ q0. If q0 = (n*�)2, then λn∗ (a) ≡ q0 when a ≥ 0; the behaviour of �n(a) and ωn∗ (a) is similar,
but un∗ ≡ 0.

Suppose the left end is free: u(0) = 0; we then obtain the following representations for the eigenfunctions and
characteristic equations

(4.9)

According to relation (4.9) the natural frequencies ωn(a) = √
λn(a) decrease as the parameter a ≥ 0 increases, as in

the case when both ends are fixed (4.8). The qualitative conclusions reached above for the case when q0 = (n*�)2 hold.
Hence, the results of an analytical investigation of problem (4.1) clearly illustrate the conclusions of the theorem (see
Section 2). They characterize the anomalous behaviour of the natural frequencies as the length of the elastic systems
increase.



L.D. Akulenko, S.V. Nesterov / Journal of Applied Mathematics and Mechanics 70 (2006) 408–415 415

Acknowledgement

This research was supported financially by the Russian Foundation for Basic Research (05-01-00043, 0.5-01-00563)
and “Support for Leading Scientific Schools” programme (NSh 1627.2003.1).

References

1. Akulenko LD, Nesterov SV. High-Precision Methods in Eigenvalue Problems and their Applications. Boca Raton: CRC Press; 2005. p. 255.
2. Courant R, Hilbert D. Methods of Mathematical Physics. New York: Wiley; 1989.
3. Smirnov VI. A Course in Higher Mathematics. Vol. 4. Pt. 2. Moscow: Nauka; 1981.
4. Korn GA, Korn TM. Mathematical Handbook for Scientists and Engineers. New York: Dover; 2000.
5. Akulenko LD, Nesterov SV. Determination of the frequencies and modes of oscillations of non-uniform distributed systems with boundary

conditions of the third kind. Prikl Mat Mekh 1997;61(4):547–55.
6. Akulenko LD. High-frequency natural oscillations of mechanical systems. Prikl Mat Mekh 2000;64(5):817–32.

Translated by R.C.G.


	The dependence of the natural frequencies of a one-dimensional elastic system on its length
	Formulation of the problem
	Determination of the local dependence of the natural oscillation frequencies on the length parameter of the system
	Test examples
	Systems with piecewise-constant characteristics
	Acknowledgement
	References


